Что такое количество ядер в телефоне. Какой процессор лучше для смартфона? Какое количество ядер необходимо для эффективной функциональности устройства


Часто покупатели смартфонов сталкиваются с вопросом: какой процессор лучше выбрать для телефона. Многие люди считают, что количество ядер и частота играют ключевую роль в подборе. Но данный фактор не является определяющим в работоспособности и производительности мобильного устройства.

От чего зависит производительность смартфонов?

Показатели работоспособности гаджетов пребывают в зависимости от следующих факторов:

  • оперативной памяти;
  • типа процессора;
  • вида графического адаптера.

Названные факторы определяют плавность запуска интерфейса и успешного старта работы разнообразных приложений. Поэтому, прежде чем купить мобильное устройство, стоит осведомиться, какой процессор лучше подойдет для смартфона, чтобы он функционировал максимально качественно.

Платформы для мобильных устройств

Среди платформ для мобильных телефонов самые популярные:

  • Windows Phone;
  • Android;
  • IOS для iPhone.

От объема «оперативки» будет зависеть скорость работы смартфона и возможность быстрого открытия приложений.

Производители процессоров

Какие самые лучшие процессоры для смартфонов? Однозначного ответа на данный вопрос не существует. Стоит отметить одного из лидеров в производстве микрочипов. Это – компания Qualcomm, которая разработала такие хиты продаж, как Snapdragon 400, 600 и 800. Корпорация Apple под свои девайсы проектирует процессоры самостоятельно с использованием архитектуры ARM. Корейский бренд Samsung тоже разработал микрочипы Samsung Exynos, которые устанавливаются на ТОП-овые смартфоны компании. Достойна особого внимания и китайская компания MediaTek, которая уверенно осваивает современный рынок. Стоит упомянуть бренд Intel, выпускающий процессоры на архитектуре х86, используемой для разработки компьютерных микрочипов. В основном продукция данного производителя задействуется в Windows-устройствах.

Частота процессора: какая лучше для смартфона?

Выбирая смартфон, не стоит акцентироваться на показателях тактовых частот. Но, чем более высоки цифры, тем это лучше.
Практически все процессоры для «мобильников» имеют свойство автоматически регулировать собственные частоты. Поэтому в характеристиках смартфона либо планшета указывают верхний показатель.
Основная масса смартфонов имеет процессоры с такими диапазонами:

  • 1000-1300 МГц для моделей бюджетной категории;
  • 1300-1700 МГц для среднего класса;
  • 1900 МГц – это самый мощный процессор для смартфона либо планшета.

Важно понимать: мегагерцы на одном устройстве могут «показывать себя» быстрее, чем на ином. На показатель скорости функционирования гаджета влияет не только частота, но и много других параметров.
Для определения скорости работы процессора разработаны специальные программы, с помощью которых можно сравнивать производительность смартфонов. При любых обстоятельствах выбор процессора для смартфона лучше остановить на микрочипе с частотой не ниже 1500 МГц.

Какое количество ядер необходимо для эффективной функциональности устройства?

На современном рынке присутствует огромнейшее количество многоядерных процессоров, которые для разных задач используют несколько вычислительных блоков. После создания двухъядерных микрочипов на рынке стали появляться также четырех-, пяти- и восьмиядерные решения.
При покупке мобильного устройства выбор может казаться очевидным, исходя из принципа – чем больше количество ядер, тем лучше. Но это не всегда так. Процессоры для смартфонов практически никогда не используют все ядра для запуска и функционирования приложений, для большинства которых вполне хватает двухъядерного чипа.
Ярким свидетельством этого может послужить iPhone последней версии, использующий двухъядерный процессор. Правильная и качественная оптимизация позволяет функционировать гаджету на высшем уровне, а работоспособности данного устройства позавидуют многие аппараты даже с восьмиядерными микрочипами.

Стоит уделить внимание процессору Samsung Exynos 5, которым оснащены некоторые модели гаджетов бренда. Он имеет восемь ядер за счет двух четырехъядерных микрочипов, которые не функционируют одновременно. Один из процессоров более мощный и запускается при открытии «тяжелых» игр и приложений. При этом он является достаточно «прожорливым». Остальные задачи выполняются более экономным чипом, который бережет заряд батареи и способен обеспечивать отменную производительность менее сложных приложений.

Не знаете, как выбрать хороший процессор для смартфона? Приобретая бюджетный девайс, достаточно будет двухъядерного чипа. При увлеченности играми стоит обратить внимание на четырехъядерные вариации. Восьмиядерный процессор – это, конечно, хорошо, но применения ему пока практически нет. Когда появятся возможности использовать подобные гаджеты, то современные смартфоны премиум-класса будут стоить, как бюджетные модели.

Какой процессор лучше для смартфона на Андроид?

Большинство Андроид-приборов функционируют на базе микрочипов Snapdragon производства компании Qualcomm. При достаточно существенной нагрузке гаджет покажет работу во всю мощность, которая указывается в его характеристиках. А при простое рабочие частоты будут снижены для экономии батареи.

Было бы неверно утверждать, что Snapdragon – это самый лучший процессор для Андроид-смартфона. Но популярность его установления на большинстве девайсов достаточно высокая.

Всего каких-то пять лет назад в смартфонах были одноядерные процессоры, а предсказания о появлении в мобильных гаджетах многоядерных чипов вызывали лишь усмешки. Тем не менее, в начале 2011 года был представлен первый смартфон с двухъядерным чипсетом, и с тех пор количество ядер в мобильных процессорах только растёт. Сегодня нас уже не слишком удивляют чипсеты с десятью ядрами (к примеру, ), и нет оснований полагать, что эта цифра перестанет увеличиваться. Чтобы понять, чего добиваются производители, и зачем смартфонам столько ядер, начнём с небольшого экскурса в историю.

В погоне за производительностью

До 2011 года рост производительности процессоров мобильных устройств достигался в первую очередь увеличением их тактовой частоты. Но дальше бодро двигаться за счёт наращивания частот не получилось: в мобильных устройствах остро стоит проблема с охлаждением. Уменьшить же перегрев на высоких тактовых частотах можно, перейдя на более тонкий техпроцесс. Однако совершенствование литографического оборудования происходило недостаточно быстро, и вот тогда производители решили прибавить смартфонам производительности способом, уже опробованным на ПК - добавив второе вычислительное ядро.

Итак, первый смартфон с двухъядерным процессором появился в 2011 году: это был LG Optimus 2X с чипсетом NVIDIA Tegra 2. Чипсет был построен на ядрах ARM Cortex-A9 с тактовой частотой до 1 ГГц, выполненных по 40-нм техпроцессу. Смартфон действительно показывал хорошие результаты в синтетических тестах и при выполнении определённых задач, но ещё около года его «двухъядерность» была почти бесполезна, поскольку разработчики приложений не торопились массово оптимизировать свои программы для работы с двумя ядрами. Впрочем, разные процессы уже могли нагружать оба ядра одновременно, что и давало видимый прирост скорости.

Однако чем больше распространялись устройства с многоядерными процессорами, тем больше им уделяли внимания разработчики требовательных приложений - прежде всего игр. Само собой, производители смартфонов не стали останавливаться на двух ядрах и уже в 2012 году появился первый аппарат с пятиядерным процессором LG Optimus 4X HD на базе чипсета NVIDIA Tegra 3 с четырьмя ядрами ARM Cortex-A9 на тактовой частоте 1,5 ГГц и пятым ядром-компаньоном с частотой 500 МГц. Четыре основных ядра определяли выдающуюся производительность устройства, но быстро разряжали батарею. Поэтому простые задачи обрабатывало работающее на пониженной частоте ядро-компаньон.

Первым «чистым» четырёхъядерным процессором стал Qualcomm Snapdragon S4 Pro. В отличие от чипсетов NVIDIA, в линейке S4 Pro компания Qualcomm использовала ядра собственной разработки под названием Krait, которые поддерживали технологию aSMP, позволяющую выбирать напряжение и частоту каждого ядра в отдельности и даже полностью их отключать. Синхронные системы, которые в то время разрабатывали компании NVIDIA и ARM, этого делать не могли.

В погоне за энергоэффективностью

Производительность четырёхъядерных решений вполне удовлетворила как потребителей, так и производителей: последним оставалось только по мере возможности уменьшать техпроцесс и увеличивать тактовую частоту. Однако при разработке первых четырёхъядерных процессоров инженерам пришлось всерьёз задуматься об энергоэффективности. Результатом этих нелёгких дум стало появление архитектуры 4-PLUS-1 у NVIDIA и внедрение технологии aSMP в процессоры Qualcomm, о которых мы уже говорили.

Примерно в это же время появляется архитектура ARM big.LITTLE, которая была призвана решить сложившуюся проблему. Первая реализация big.LITTLE, Clustered Switching, оказалась не слишком удачной, поскольку позволяла устройству переключаться только между кластерами ядер одного типа без возможности управлять каждым из них в отдельности. Первым чипсетом с такой реализацией архитектуры стал Samsung Exynos 5 Octa (5410) с четырьмя ядрами ARM Cortex-A7 и четырьмя ядрами Cortex-A15, применявшийся в смартфоне Galaxy S4. В этом процессоре при энергопотреблении до 1 Вт работал кластер LITTLE, который при превышении этого порога отключался для начала работы кластера big с максимальным энергопотреблением до 6 Вт.

Во второй реализации big.LITTLE под названием IKS кластеры состояли из двух ядер разных типов, но в каждый момент времени могло работать одно. Эта технология позволяла работать одновременно ядрам разных типов (например, двум производительным и двум энергосберегающим ядрам в восьмиядерном чипсете), но задействовать все ядра было по-прежнему невозможно.

Наконец, появилась технология HMP, которая была способна задействовать любые комбинации ядер с любой частотой каждого из них, включая одновременную работу всех ядер для достижения максимальной производительности. Именно HMP используется во всех современных чипсетах, построенных на архитектуре ARM big.LITTLE, ну а первым процессором на этой архитектуре стал также разработанный компанией Samsung чипсет Exynos 5 Octa (5420).

Используются ли ядра приложениями?

Существует довольно распространённое мнение, что смартфонам на самом деле не нужны многоядерные процессоры. Раньше так говорили о четырёхъядерных процессорах, сейчас - о восьмиядерных. Якобы, мобильные приложения просто не могут задействовать все ядра, в результате чего большинство из них «простаивает» без надобности. Но даже на заре «многоядерности» смартфонов одно ядро могло использоваться работающим приложением, а другое в это же время заниматься обновлением виджетов, синхронизацией и другими системными процессами. В настоящее же время мобильные программы, начиная с самых простых, могут задействовать минимум четыре ядра. Чтобы подтвердить это, ресурс Android Authority провёл собственное исследование, запуская различные приложения и анализируя загруженность ядер. Вот что удалось получить для браузера Chrome на четырёхъядерном чипсете Qualcomm Snapdragon 801:

Как вы можете увидеть на графиках, Chrome умеет работать в несколько потоков (иначе мы бы видели использование максимум двух ядер), причём операционная система старается согласовать нагрузку на все ядра во избежание ситуаций, когда два ядра имеют стопроцентную нагрузку, а два других - простаивают.

Если провести тот же тест на чипсете с архитектурой big.LITTLE HMP, картина меняется:

В случае использования гетерогенного мультипроцессинга, число используемых ядер будет близко к максимальному, а графики загруженности ядер не будут совпадать даже приблизительно.

Чтобы понять, почему так происходит, и почему одному и тому же приложению требуется разное количество ядер на разных чипсетах, посмотрим на ещё один график, полученный в игре Epic Citadel:

На графике видно, что при большой нагрузке активен кластер big, что соответствует одновременному использованию четырёх ядер, но при снижении нагрузки некоторое время могут работать оба кластера одновременно, суммарно используя восемь ядер. Низкая загруженность каждого ядра, при этом, не вызовет скачков в энергопотреблении, а дальнейшее снижение нагрузки приведёт к полному отключению кластера big и включению энергосберегающего кластера LITTLE.

Вывод из вышесказанного простой и категоричный: отсутствие многопоточности в приложениях Android - это миф, причём операционная система распределяет нагрузку на ядра наилучшим образом в зависимости от того, использует чипсет архитектуру big.LITTLE или нет.

В погоне за маркетингом

Первые восьмиядерные процессоры вызывали насмешки скептически настроенных пользователей, но, несмотря на это, стали лучшим доступным решением для оптимизации баланса производительности и энергопотребления смартфона. Производители, впрочем, останавливаться не стали, и в 2015 году компания Mediatek представила первый чипсет с десятью ядрами - Helio X20, а также заявила, что в скором времени выпустит и двенадцатиядерный процессор.

В Helio X20 используются ядра уже не двух, а трёх типов с плавно возрастающей производительностью: четыре Cortex-A53 на 1,4 ГГц, четыре Cortex-A53 на 2 ГГц и два Cortex-A72 на 2,5 ГГц.

Несмотря на впечатляющие цифры, в отличие от первых двух-, четырёх- и восьмиядерных чипсетов, Helio X20 не стал фурором, уступая в бенчмарках своим конкурентам с меньшим числом ядер. Приложений, которые могут задействовать одновременно более восьми ядер, пока что ничтожно мало, и дальнейшее увеличение числа ядер в ближайшее время не даст сколько-нибудь заметного прироста производительности.

Что касается неизбежного спутника всевозрастающей мощности мобильных устройств - необходимости уменьшения энергопотребления, производители чипсетов и смартфонов активно используют для этого другие способы, например, уменьшают техпроцесс и занимаются оптимизацией других компонентов - экранов или памяти. А увеличение числа ядер ведёт, скорее, к росту стоимости конечных устройств.

Существует и альтернативный пример развития - компания Apple. В то время как производители Android используют операционную систему Google, а большинство из них - ещё и процессоры сторонних разработок, компания Apple сама занимается разработкой iOS и проектированием чипсетов для своих мобильных устройств. Это позволяет компании добиться хорошего баланса между производительностью и энергоэффективностью путём глубокой оптимизации как программной, так и аппаратной части гаджетов. В своих современных чипсетах Apple использует… всего два ядра собственной разработки под названием Twister. Конечно, смартфоны яблочной компании показывают намного меньшие цифры в бенчмарках по сравнению с Android-устройствами, но к чему погоня за цифрами, если система, все программы и игры на гаджетах работают отлично?

В погоне за будущим

На начало 2016 года четырёхъядерные чипсеты де-факто стали для смартфонов (кроме iPhone) минимальным стандартом. Лишь в самых бюджетных моделях ещё можно встретить двухъядерные процессоры, а одноядерные и вовсе стали историей. Стало ли это полезным для пользователей? Несомненно, да, поскольку рынок всегда расставляет всё на свои места, и неудачные решения быстро уходят в прошлое. Двух- и четырёхъядерные процессоры доказали, что они являются отличным решением увеличения производительности смартфонов без фатального уменьшения автономности. Сейчас уже вполне можно утверждать, что ожидания оправдала и архитектура ARM big.LITTLE HMP при использовании шести-восьми ядер. Она лучше других балансирует между производительностью и энергоэффективностью, меняя эти параметры в широких пределах в зависимости от текущих задач.

Производителям смартфонов с каждым годом становится всё труднее удивлять пользователей. Компаниям тяжело даётся переход на более тонкие техпроцессы, что ограничивает возможности увеличения частоты, да и имеющиеся стандарты производительности уже таковы, что, купив флагман, человек не будет ощущать её нехватки ещё 3–4 года. В результате и появляются чипсеты, поражающие воображение цифрами, за которыми пока не скрывается никаких благ для конечного пользователя. И дальнейшее увеличение числа ядер в мобильных гаджетах на сегодняшний день едва ли оправдано: таким способом не удастся добиться заметного увеличения ни производительности, ни автономности устройств.

Надолго ли удержатся на рынке чипсеты с большим, чем восемь, количеством ядер - покажет время, но такие процессоры не несут в себе никаких важных новшеств, которые бы мог прочувствовать каждый, поэтому гнаться за такими устройствами в ближайшем будущем точно не стоит.

Изначально процессоры обладали всего одним ядром, на которое возлагались все задачи. Постепенно чипы становились мощнее – они получали возможность обрабатывать больше информации за одну единицу времени. Из-за этого они сильно нагревались, что стало настоящей проблемой. Было принято решение разделить чип на несколько ядер, в результате чего их производительность возросла, а нагрев так и остался на прежнем уровне, так как каждое ядро обрабатывало параллельно большой поток информации. Позже появились четырех-, шести- и даже восьмиядерные процессоры.

Так вот ядра в телефоне (вернее – в процессоре) нужны для параллельной (одновременной) обработки потока информации. Возложить сразу большой объем данных для обработки на одно ядро не удается.

Больше – значит лучше?

Ошибочно полагать, что чем больше ядер в телефоне, тем лучше. На самом деле это не так. Большинство четырехъядерных процессоров работают по следующему принципу: 2 ядра являются энергосберегающими и работают только в том случае, когда нагрузка на чип небольшая. Они расходуют небольшое количество энергии, и их ресурса достаточно для поддержки шаблонных задач (прослушивание музыки, просмотр видео, серфинг в интернете). Когда пользователь запускает игру, то подключаются дополнительные мощные ядра – их ресурс очень высок, но они потребляют много энергии, из-за чего аккумулятор разряжается быстро.

Чаще всего четырехъядерные процессоры могут работать на полную мощность и задействовать сразу все четыре ядра. Что касается “восьмиядерников”, то эти работают как два отдельных “четырехъядерника”: при слабых нагрузках активными являются энергосберегающие ядра, при высоких подключаются мощные, а слабые отключаются. Но уже сегодня существуют процессоры, которые могут одновременно задействовать все восемь ядер – их производительность поражает.

Следовательно, современные процессоры поделены на ядра в большей степени для повышения энергоэффективности, а не производительности. И это разумное решение, ведь без необходимости нет нужны “гонять” сильные ядра, когда с простыми задачами сможет справиться процессор, потратив при этом небольшое количество энергии.

Сам термин “восьмиядерный” вводит в заблуждение пользователя, который полагает, что такой чип является более мощным. Это не всегда справедливо.


Пожалуйста, оцените статью:

Производительность смартфона зависит от многих компонентов, включая процессор, количество ядер и объем оперативной памяти. Все они определяют, насколько быстро будет работать гаджет.

«Нельзя повесить табличку и сказать, что вот этот смартфон будет работать быстрее, чем этот, потому что в нем такое железо. По факту влияет еще и операционная система, какие-то модификации, которые делает сам производитель. Например, одно и тоже железо будет по-разному себя вести на мобильной Windows, на iOS и на Android. Так что здесь важно все. Но если мы смотрим на характеристики и видим там мощный процессор, то, скорее всего, смартфон будет достаточно быстрым», — говорит эксперт по гаджетам Илья Ковальчук .

Процессор

При выборе быстрого смартфона нужно обратить внимание на тактовую частоту процессора. Несмотря на то, что современные мобильные процессоры в большинстве своем умеют понижать и повышать частоту в зависимости от нагрузки, это важная характеристика. Бюджетные процессоры имеют частоту 1000-1300 МГц, средний класс — 1300-1700 МГц, а флагманы работают на 1900 МГц и более. Однозначного ответа на вопрос о том, какой процессор лучше, не существует.

«Каждый год выходят процессоры нового поколения, произведенные с применением новых технологических норм. Для смартфонов такие процессоры поставляют Samsung Exynos, Qualcomm, MediaTek, Apple и т. д. Процессоры Samsung Exynos 9810 и Qualcomm Snapdragon 845 для Android-смартфонов самые совершенные на сегодня. Но это не значит, что нужно выбирать именно их. Можно взять очень хорошие процессоры Snapdragon 636, Snapdragon 660, которые относятся к средней линейке. Смартфоны с таким процессором будут стоить недорого, порядка 14 000 рублей. Раньше они представляли собой восьмисотую линейку, теперь это шестисотая. Потребляют такие процессоры немного, греются мало, а производительность у них отличная», — говорит Ковальчук.

Ядра

Термины «восьмиядерный» и «четырехъядерный» обозначают число ядер центрального процессора. В четырехъядерном процессоре все ядра могут работать одновременно, обеспечивая быструю работу и выполнение задач, а в восьмиядерном чипы состоят из двух четырехъядерных процессоров, которые распределяют между собой различные задачи. Поскольку в процессе работы смартфон не всегда задействует все ядра одновременно, важно не их число, а способ установки. В настоящее время большинство решений выпускается по норме 32 нанометра, также появляются первые устройства на процессорах, выполненных по норме гораздо ниже. Чем меньше такое значение, тем лучше.

«Важно посмотреть на сборку. Из каких ядер все собрано. Если это ядра А73 плюс А53, то это очень хорошая сборка. Даже если частоты понижены, то смартфон будет работать хорошо. Если это восемь ядер А53, то это процессор начального уровня. Он не будет очень мощным. Если еще он произведен с минимумом технологических норм — тем более. Сейчас хотят 7 нанометров производить, а если в смартфоне 22 нанометра, то какие бы ядра ни были, даже не очень слабые, этот процессор будет и потреблять много, и греться», — говорит Ковальчук.

Оперативная память

Чем больше объем оперативной памяти, тем быстрее запускаются приложения и тем большее количество задач может выполнять смартфон одновременно.

«Минимум — это три гигабайта для смартфона пользователя сети, человека, который играет в игры. Можно больше. Энтузиасты берут шесть гигабайт, но если операционная система хорошо оптимизирована, если все сделано по уму, то с тремя гигабайтами никаких проблем не будет. Если в смартфоне кривая операционная система, разработанная непонятно кем, то она может еще гигабайт забить», — говорит Ковальчук.

Статьи и Лайфхаки

Многие владельцы смартфонов интересуются, что же такое процессор в мобильном телефоне и какие его функциональные возможности.

По аналогии с персональным компьютером, микрочип является сердцем мобильного устройства. Однако он используется вместе с другими компонентами (графическим ускорителем и т.д.), образуя систему, которая выполняет функцию командного центра.

Абсолютным лидером среди разработчиков архитектур для микропроцессоров является компания ARM Limited. Преимущественное большинство производителей, таких как , NVidia, и другие, используют при изготовлении чипов технологию ARM.

О версиях архитектур для процессора в телефоне

Архитектура – одна из важнейших характеристик микропроцессоров. Благодаря развитию технического прогресса постоянно расширяются функциональные возможности смартфонов. Модернизация устройств требует более новых версий «начинки», которые позволяют оптимизировать их работу. Например, увеличить производительность, снизить затраты энергии, прочее.

Однако вместе с преимуществами процессоры более свежих версий имеют некоторые недостатки. Так, устройства на базе ARMv6 оказались не совместимыми с некоторыми , в частности, разработанными для ARMv7. Это является не единственным доказательством, что разница между различными версиями одной архитектуры может быть такой же, как между совершенно разными архитектурами.

От чего зависят основные параметры процессора в телефоне


Второй по значимости характеристикой после архитектуры является ядро. В технических параметрах каждого смартфона, как правило, указывается двух- либо четырехядерный процессор. Ядро определяет следующие параметры работы девайса :
  1. Производительность .

    Для трехмерных игр, приложений для обработки видео-, мультимедийных файлов необходимо наличие 4 ядер. Иногда в устройствах используют дополнительное 5 ядро для выполнений несложных задач... таких, как экономия заряда батареи при высокой производительности.

    В целом, большее количество ядер не столько расширяет функциональные возможности системы, сколько увеличивает скорость выполнения задач. Оптимизация процесса производится за счет распределения нагрузки между элементами.

  2. Энергопотребление .

    Для снижения энергозатрат ядра, которые не используются в процессе работы, автоматически отключаются.

  3. Тактовая частота .

    Показывает, какое количество тактов выполняет микропроцессор за интервал времени (секунда). Единица измерения – ГГц, МГц. Величина тактовой частоты пропорциональна скорости работы устройства, а также значению энергопотребления. С целью снижения энергозатрат производители ставят ограничение на ТЧ.

Чтобы обеспечить высокую производительность при низком энергопотреблении, рекомендуется приобретать девайсы на базе 4х-ядерных процессоров. Однако с целью предотвращения перегрева устройства необходимо устанавливать приложения последних версий.

Еще одна нужная характеристика мобильных процессоров


Одним из важных параметров, о котором редко вспоминают продавцы гаджетов, является объем кэш-памяти. Чем больше вместительность виртуального хранилища, тем выше скорость выполнения задач.

Разницу между объемами кэша можно проследить, сравнив устройство от официального производителя и его реплику. При одинаковых параметрах брендовый гаджет будет работать быстрее, чем копия.

Снижение объема кэш-памяти позволяет снизить рыночную стоимость продукта. Однако такой чип вполне может удовлетворить потребности среднестатистического пользователя.